Markov Boundary Discovery Based on Variant Ridge Regularized Linear Models
نویسندگان
چکیده
منابع مشابه
Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملInfluence Measures in Ridge Linear Measurement Error Models
Usually the existence of influential observations is complicated by the presence of collinearity in linear measurement error models. However no method of influence measure available for the possible effect's that collinearity can have on the influence of an observation in such models. In this paper, a new type of ridge estimator based corrected likelihood function (REC) for linear measurement e...
متن کاملLinear transformation of Hidden Markov Models based on linear regression
This paper treats a linear transformation of word templates in a word recognition system. The object of the transformation, called LMR-transform, is to adapt the recogniser to a new acoustical environment. The transform is derived by linear regression on pairs of word utterances from two different acoustical environments. The use of the transform has been evaluated for recognition accuracy, spe...
متن کاملGenomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
BACKGROUND Genomic selection (GS) is emerging as an efficient and cost-effective method for estimating breeding values using molecular markers distributed over the entire genome. In essence, it involves estimating the simultaneous effects of all genes or chromosomal segments and combining the estimates to predict the total genomic breeding value (GEBV). Accurate prediction of GEBVs is a central...
متن کاملDetection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions
The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2924341